來(lái)源:網(wǎng)絡(luò)資源 2022-02-13 21:16:04
1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線x = -b/2a。
對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。
特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)
2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為P ( -b/2a ,(4ac-b^2)/4a )
當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ= b^2-4ac=0時(shí),P在x軸上。
3.二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。
當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。
|a|越大,則拋物線的開(kāi)口越小。
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左; 因?yàn)槿魧?duì)稱軸在左邊則對(duì)稱軸小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同號(hào)
當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。因?yàn)閷?duì)稱軸在右邊則對(duì)稱軸要大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要異號(hào)
可簡(jiǎn)單記憶為左同右異,即當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。
事實(shí)上,b有其自身的幾何意義:拋物線與y軸的交點(diǎn)處的該拋物線切線的函數(shù)解析式(一次函數(shù))的斜率k的值?赏ㄟ^(guò)對(duì)二次函數(shù)求導(dǎo)得到。
5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點(diǎn)個(gè)數(shù)
Δ= b^2;-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。
Δ= b^2;-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。
_______
Δ= b^2-4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn)。X的取值是虛數(shù)(x= -b±√b^2-4ac 的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)
當(dāng)a>0時(shí),函數(shù)在x= -b/2a處取得最小值f(-b/2a)=4ac-b²/4a;在{x|x<-b/2a}上是減函數(shù),在{x|x>-b/2a}上是增函數(shù);拋物線的開(kāi)口向上;函數(shù)的值域是{y|y≥4ac-b^2/4a}相反不變
當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸,這時(shí),函數(shù)是偶函數(shù),解析式變形為y=ax^2+c(a≠0)
7.特殊值的形式
①當(dāng)x=1時(shí) y=a+b+c
②當(dāng)x=-1時(shí) y=a-b+c
③當(dāng)x=2時(shí) y=4a+2b+c
④當(dāng)x=-2時(shí) y=4a-2b+c
8.定義域:R
值域:(對(duì)應(yīng)解析式,且只討論a大于0的情況,a小于0的情況請(qǐng)讀者自行推斷)①[(4ac-b^2)/4a,正無(wú)窮);②[t,正無(wú)窮)
奇偶性:偶函數(shù)
周期性:無(wú)
解析式:
①y=ax^2+bx+c[一般式]
⑴a≠0
⑵a>0,則拋物線開(kāi)口朝上;a<0,則拋物線開(kāi)口朝下;
⑶極值點(diǎn):(-b/2a,(4ac-b^2)/4a);
⑷Δ=b^2-4ac,
Δ>0,圖象與x軸交于兩點(diǎn):
([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,圖象與x軸交于一點(diǎn):
(-b/2a,0);
Δ<0,圖象與x軸無(wú)交點(diǎn);
②y=a(x-h)^2+k[頂點(diǎn)式]
此時(shí),對(duì)應(yīng)極值點(diǎn)為(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;
③y=a(x-x1)(x-x2)[交點(diǎn)式(雙根式)](a≠0)
對(duì)稱軸X=(X1-X2)/2 當(dāng)a>0 且X≧(X1+X2)/2時(shí),Y隨X的增大而增大,當(dāng)a>0且X≦(X1+X2)/2時(shí)Y隨X的增大而減小
此時(shí),x1、x2即為函數(shù)與X軸的兩個(gè)交點(diǎn),將X、Y代入即可求出解析式(一般與一元二次方程連用)。
歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪問(wèn)中考網(wǎng),2023中考一路陪伴同行!>>點(diǎn)擊查看