解題思路的獲得,一般要經(jīng)歷三個步驟:
1.從理解題意中提取有用的信息,如數(shù)式特點,圖形結(jié)構(gòu)特征等;
2.從記憶儲存中提取相關(guān)的信息,如有關(guān)公式,定理,基本模式等;
3.將上述兩組信息進行有效重組,使之成為一個合乎邏輯的和諧結(jié)構(gòu)。
數(shù)學的表達,有3種方式:
1.文字語言,即用漢字表達的內(nèi)容;
2.圖形語言,如幾何的圖形,函數(shù)的圖象;
3.符號語言,即用數(shù)學符號表達的內(nèi)容,比如AB∥CD。
在初中學段中,不僅要學好數(shù)學知識,同時也要注意數(shù)學思想方法的學習,掌握好思想和方法,對數(shù)學的學習將會起到事半功倍的良好效果。其中整體與分類、類比與聯(lián)想、轉(zhuǎn)化與化歸和數(shù)形結(jié)合等不僅僅是學好數(shù)學的重要思想,同時對您今后的生活也必將起重要的作用。
先來看轉(zhuǎn)化思想:
我們知道任何事物都在不斷的運動,也就是轉(zhuǎn)化和變化。在生活中,為了解決一個具體問題,不論它有多復(fù)雜,我們都會把它簡單化,熟悉化以后再去解決。體現(xiàn)在數(shù)學上也就是要把難的問題轉(zhuǎn)化為簡單的問題,把不熟悉的問題轉(zhuǎn)化為熟悉的問題,把未知的問題轉(zhuǎn)化為已知的問題。
如方程的學習中,一元一次方程是學習方程的基礎(chǔ),那么在學習二元一次方程組時,可以通過加減消元和代入消元這樣的手段把二元一次方程組轉(zhuǎn)化為一元一次方程來解決,轉(zhuǎn)化(加減和代入)是手段,消元是目的;在學習一元二次方程時,可以通過因式分解把一元二次方程轉(zhuǎn)化為兩個一元一次方程,在這里,轉(zhuǎn)化(分解因式)是手段,降次是目的。把未知轉(zhuǎn)化為已知,把復(fù)雜轉(zhuǎn)化為簡單。同樣,三元一次方程組可以通過加減和代入轉(zhuǎn)化為二元一次方程組,再轉(zhuǎn)化為一元一次方程。在幾何學習中,三角形是基礎(chǔ),可能通過連對角線等作輔助線的方法把多邊形轉(zhuǎn)化為多個三角形進行問題的解決。
所以,在數(shù)學學習和生活中都要注意轉(zhuǎn)化思想的運用,解決問題,轉(zhuǎn)化是關(guān)鍵。
新初三快掃碼關(guān)注
中考網(wǎng)微信公眾號
每日推送學習技巧,學科知識點
助你迎接2020年中考!
歡迎使用手機、平板等移動設(shè)備訪問中考網(wǎng),2024中考一路陪伴同行!>>點擊查看