初三數(shù)學分為代數(shù)、幾何兩個部分。代數(shù)內(nèi)容有一元二次方程、函數(shù)及其圖象,統(tǒng)計初步三章;幾何內(nèi)容有解直角三角形和圓兩章。初三數(shù)學的學習,是以前兩年數(shù)學學習為基礎的,是對已學知識的加深、拓寬、綜合與延續(xù),是初中數(shù)學學習的重點,也是中考考查的重點。為了學好初三數(shù)學,不妨從以下幾個方面給予重視:
(一)狠抓“雙基”訓練。
“雙基”即基礎知識與基本技能;A知識是指數(shù)學概念、定理、法則、公式以及各種知識之間的內(nèi)在聯(lián)系;基本技能是一種較穩(wěn)定的心理因素,是一種已經(jīng)程式化了的動作,初中數(shù)學基本技能包括運算技能、畫圖技能、運用數(shù)字語言的技能、推理論證的技能等。只有扎實地掌握“雙基”,才能靈活應用、深入探索,不斷創(chuàng)新。
(二)注意前后聯(lián)系。
初三數(shù)學是以前兩年的學習內(nèi)容為基礎的,可以用來復習、鞏固相關的內(nèi)容,同時新知識的學習常常由舊知識引入或要用到前面所學過的內(nèi)容,甚至是已有知識的綜合、提高與延續(xù)。因此在學習中,要注意前后知識的聯(lián)系,以便達到鞏固與提高的目的。
(三)重視歸納梳理。
初三數(shù)學各章內(nèi)容豐富、綜合性強,學習過程中要及時進行歸納梳理,以便于對知識深入理解,系統(tǒng)掌握,靈活運用。要學會從橫向、縱向兩方面歸納梳理知識?v向主要是按照知識的來龍去脈進行總結(jié)歸納,如學完函數(shù),可按正比例函數(shù),一次函數(shù)、二次函數(shù)、反比例函數(shù)來歸納知識。橫向是平行的、相關的知識的整合,通過對比指出其區(qū)別與聯(lián)系,如學完二次函數(shù)之后,可把二次函數(shù)y=ax2+bx+c(a≠0)與一元二次方程ax2+bx+c=0(a≠0)之間的聯(lián)系進行歸納,這樣既可以鞏固新、舊知識,更可以提高綜合運用知識的能力,收到事半功倍的效果。
(四)掌握基本模型,找出本質(zhì)屬性。
中學的“數(shù)學模型”常常是指反映數(shù)學知識規(guī)律的結(jié)論和基本幾何圖形。初中代數(shù)中,運算法則、性質(zhì)、公式、方程、函數(shù)解析式等均是代數(shù)的模型;平面幾何中,各類知識中的基本圖形均是幾何模型。通過對這些基本模型的研究,能夠更好地掌握知識的本質(zhì)屬性,溝通知識間的聯(lián)系。重要的公式、定理是知識系統(tǒng)的主干,我們不僅要知其內(nèi)容,還應該搞清其來龍去脈,理解其本質(zhì)。如一元二次方程的求根公式的推導,不僅體現(xiàn)方法,而且由此公式可得出兩根與系數(shù)的關系,還可類似地推出二次函數(shù)的頂點坐標公式,所以一定要掌握推導過程。再如,相交弦定理、切割線定理、割線定理、切線長定理盡管形式上不盡相同,但是它們之間都有著某種內(nèi)在聯(lián)系。
聯(lián)系1:由兩條弦的交點運動及割線的運動將四條定理結(jié)論統(tǒng)一到PA·PB=PC·PD上來;
聯(lián)系2:結(jié)論形式上的統(tǒng)一:PA·PB=22OPR-(O為圓心,P為兩弦交點)。
所以也把相交弦定理、切割線定理、割線定理統(tǒng)稱為“圓冪定理”,這也是幾何的一個基本模型。
(五)掌握數(shù)學思想方法。
數(shù)學思想方法是解決數(shù)學問題的靈魂,是形成數(shù)學能力、數(shù)學意識的橋梁,是靈活運用數(shù)學知識、技能的關鍵。在解數(shù)學綜合題時,尤其需要用數(shù)學思想方法來統(tǒng)帥,去探求解題思路,優(yōu)化解題過程,驗證所得結(jié)論。
在初三這一年的數(shù)學學習中,常用的數(shù)學方法有:消元法、換元法、配方法、待定系數(shù)法、反證法、作圖法等;常用的數(shù)學思想有:轉(zhuǎn)化思想,函數(shù)與方程思想、數(shù)形結(jié)合思想、分類討論思想。轉(zhuǎn)化思想就是把待解決或難解決的問題,通過某種轉(zhuǎn)化手段,使它轉(zhuǎn)化成已經(jīng)解決或比較容易解決的問題,從而求得原問題的解答。轉(zhuǎn)化思想是一種最基本的數(shù)學思想,如在運用換元法解方程時,就是通過“換元”這個手段,把分式方程轉(zhuǎn)化為整式方程,把高次方程轉(zhuǎn)化為低次方程,總之把結(jié)構(gòu)復雜的方程化為結(jié)構(gòu)簡單的方程。學習和掌握轉(zhuǎn)化思想有利于我們從更高的層次去揭示、把握數(shù)學知識、方法之間的內(nèi)在聯(lián)系,樹立辯證的觀點,提高分析問題和解決問題的能力。函數(shù)思想就是用運動變化的觀點,分析和研究具體問題中的數(shù)量關系,用函數(shù)的形式,把這種數(shù)量關系表示出來并加以研究,從而使問題得到解決。方程思想,就是從分析問題的數(shù)量關系入手,通過設定未知數(shù),把問題中的已知量與未知量的數(shù)量關系,轉(zhuǎn)化為方程或方程組,然后利用方程的理論和方法,使問題得到解決。方程思想在解題中有著廣泛的應用,解題時要善于從題目中挖掘等量關系,能夠根據(jù)題目的特點選擇恰當?shù)奈粗獢?shù),正確列出方程或方程組。數(shù)形結(jié)合思想就是把問題中的數(shù)量關系和幾何圖形結(jié)合起來,使“數(shù)”與“形”相互轉(zhuǎn)化,達到抽象思維與形象思維的結(jié)合,從而使問題得以化難為易。具體來說,就是把數(shù)量關系的問題,轉(zhuǎn)化為圖形問題,利用圖形的性質(zhì)得出結(jié)論,再回到數(shù)量關系上對問題做出回答;反過來,把圖形問題轉(zhuǎn)化成一個數(shù)量關系問題,經(jīng)過計算或推論得出結(jié)論再回到圖形上對問題做出回答,這是解決數(shù)學問題常用的一種方法。分類討論思想是根據(jù)所研究對象的差異,將其劃分成不同的種類,分別加以研究,從而分解矛盾,化整為零,化一般為特殊,變抽象為具體,然后再一一加以解決。分類依賴于標準的確定,不同的標準會有不同的分類方式?傊瑪(shù)學思想方法是分析解決數(shù)學問題的靈魂,也是訓練提高數(shù)學能力的關鍵,更是由知識型學習轉(zhuǎn)向能力型學習的標志。
歡迎使用手機、平板等移動設備訪問中考網(wǎng),2023中考一路陪伴同行!>>點擊查看