來(lái)源:網(wǎng)絡(luò)資源 作者:中考網(wǎng)整理 2019-04-23 20:26:47
分為代數(shù)、幾何兩個(gè)部分。代數(shù)內(nèi)容有一元二次方程、函數(shù)及其圖象,統(tǒng)計(jì)初步三章;幾何內(nèi)容有解直角三角形和圓兩章。初三數(shù)學(xué)的學(xué)習(xí),是以前兩年數(shù)學(xué)學(xué)習(xí)為基礎(chǔ)的,是對(duì)已學(xué)知識(shí)的加深、拓寬、綜合與延續(xù),是初中數(shù)學(xué)學(xué)習(xí)的重點(diǎn),也是中考考查的重點(diǎn)。為了學(xué)好初三數(shù)學(xué),不妨從以下幾個(gè)方面給予重視:
(一)狠抓“雙基”訓(xùn)練。
“雙基”即基礎(chǔ)知識(shí)與基本技能。基礎(chǔ)知識(shí)是指數(shù)學(xué)概念、定理、法則、公式以及各種知識(shí)之間的內(nèi)在聯(lián)系;基本技能是一種較穩(wěn)定的心理因素,是一種已經(jīng)程式化了的動(dòng)作,初中數(shù)學(xué)基本技能包括運(yùn)算技能、畫(huà)圖技能、運(yùn)用數(shù)字語(yǔ)言的技能、推理論證的技能等。只有扎實(shí)地掌握“雙基”,才能靈活應(yīng)用、深入探索,不斷創(chuàng)新。
(二)注意前后聯(lián)系。
初三數(shù)學(xué)是以前兩年的學(xué)習(xí)內(nèi)容為基礎(chǔ)的,可以用來(lái)復(fù)習(xí)、鞏固相關(guān)的內(nèi)容,同時(shí)新知識(shí)的學(xué)習(xí)常常由舊知識(shí)引入或要用到前面所學(xué)過(guò)的內(nèi)容,甚至是已有知識(shí)的綜合、提高與延續(xù)。因此在學(xué)習(xí)中,要注意前后知識(shí)的聯(lián)系,以便達(dá)到鞏固與提高的目的。
(三)重視歸納梳理。
初三數(shù)學(xué)各章內(nèi)容豐富、綜合性強(qiáng),學(xué)習(xí)過(guò)程中要及時(shí)進(jìn)行歸納梳理,以便于對(duì)知識(shí)深入理解,系統(tǒng)掌握,靈活運(yùn)用。要學(xué)會(huì)從橫向、縱向兩方面歸納梳理知識(shí)?v向主要是按照知識(shí)的來(lái)龍去脈進(jìn)行總結(jié)歸納,如學(xué)完函數(shù),可按正比例函數(shù),一次函數(shù)、二次函數(shù)、反比例函數(shù)來(lái)歸納知識(shí)。橫向是平行的、相關(guān)的知識(shí)的整合,通過(guò)對(duì)比指出其區(qū)別與聯(lián)系,如學(xué)完二次函數(shù)之后,可把二次函數(shù)y=ax2+bx+c(a=?0)與一元二次方程ax2+bx+c=0(a=?0)之間的聯(lián)系進(jìn)行歸納,這樣既可以鞏固新、舊知識(shí),更可以提高綜合運(yùn)用知識(shí)的能力,收到事半功倍的效果。
(四)掌握基本模型,找出本質(zhì)屬性。
中學(xué)的“數(shù)學(xué)模型”常常是指反映數(shù)學(xué)知識(shí)規(guī)律的結(jié)論和基本幾何圖形。初中代數(shù)中,運(yùn)算法則、性質(zhì)、公式、方程、函數(shù)解析式等均是代數(shù)的模型;平面幾何中,各類知識(shí)中的基本圖形均是幾何模型。通過(guò)對(duì)這些基本模型的研究,能夠更好地掌握知識(shí)的本質(zhì)屬性,溝通知識(shí)間的聯(lián)系。重要的公式、定理是知識(shí)系統(tǒng)的主干,我們不僅要知其內(nèi)容,還應(yīng)該搞清其來(lái)龍去脈,理解其本質(zhì)。如一元二次方程的求根公式的推導(dǎo),不僅體現(xiàn)方法,而且由此公式可得出兩根與系數(shù)的關(guān)系,還可類似地推出二次函數(shù)的頂點(diǎn)坐標(biāo)公式,所以一定要掌握推導(dǎo)過(guò)程。再如,相交弦定理、切割線定理、割線定理、切線長(zhǎng)定理盡管形式上不盡相同,但是它們之間都有著某種內(nèi)在聯(lián)系。
聯(lián)系1:由兩條弦的交點(diǎn)運(yùn)動(dòng)及割線的運(yùn)動(dòng)將四條定理結(jié)論統(tǒng)一到PA·PB=PC·PD上來(lái);
聯(lián)系2:結(jié)論形式上的統(tǒng)一:PA·PB=22OPR-(O為圓心,P為兩弦交點(diǎn))。
所以也把相交弦定理、切割線定理、割線定理統(tǒng)稱為“圓冪定理”,這也是幾何的一個(gè)基本模型。
(五)掌握數(shù)學(xué)思想方法。
數(shù)學(xué)思想方法是解決數(shù)學(xué)問(wèn)題的靈魂,是形成數(shù)學(xué)能力、數(shù)學(xué)意識(shí)的橋梁,是靈活運(yùn)用數(shù)學(xué)知識(shí)、技能的關(guān)鍵。在解數(shù)學(xué)綜合題時(shí),尤其需要用數(shù)學(xué)思想方法來(lái)統(tǒng)帥,去探求解題思路,優(yōu)化解題過(guò)程,驗(yàn)證所得結(jié)論。在初三這一年的數(shù)學(xué)學(xué)習(xí)中,常用的數(shù)學(xué)方法有:消元法、換元法、配方法、待定系數(shù)法、反證法、作圖法等;常用的數(shù)學(xué)思想有:轉(zhuǎn)化思想,函數(shù)與方程思想、數(shù)形結(jié)合思想、分類討論思想。轉(zhuǎn)化思想就是把待解決或難解決的問(wèn)題,通過(guò)某種轉(zhuǎn)化手段,使它轉(zhuǎn)化成已經(jīng)解決或比較容易解決的問(wèn)題,從而求得原問(wèn)題的解答。轉(zhuǎn)化思想是一種最基本的數(shù)學(xué)思想,如在運(yùn)用換元法解方程時(shí),就是通過(guò)“換元”這個(gè)手段,把分式方程轉(zhuǎn)化為整式方程,把高次方程轉(zhuǎn)化為低次方程,總之把結(jié)構(gòu)復(fù)雜的方程化為結(jié)構(gòu)簡(jiǎn)單的方程。學(xué)習(xí)和掌握轉(zhuǎn)化思想有利于我們從更高的層次去揭示、把握數(shù)學(xué)知識(shí)、方法之間的內(nèi)在聯(lián)系,樹(shù)立辯證的觀點(diǎn),提高分析問(wèn)題和解決問(wèn)題的能力。函數(shù)思想就是用運(yùn)動(dòng)變化的觀點(diǎn),分析和研究具體問(wèn)題中的數(shù)量關(guān)系,用函數(shù)的形式,把這種數(shù)量關(guān)系表示出來(lái)并加以研究,從而使問(wèn)題得到解決。方程思想,就是從分析問(wèn)題的數(shù)量關(guān)系入手,通過(guò)設(shè)定未知數(shù),把問(wèn)題中的已知量與未知量的數(shù)量關(guān)系,轉(zhuǎn)化為方程或方程組,然后利用方程的理論和方法,使問(wèn)題得到解決。方程思想在解題中有著廣泛的應(yīng)用,解題時(shí)要善于從題目中挖掘等量關(guān)系,能夠根據(jù)題目的特點(diǎn)選擇恰當(dāng)?shù)奈粗獢?shù),正確列出方程或方程組。數(shù)形結(jié)合思想就是把問(wèn)題中的數(shù)量關(guān)系和幾何圖形結(jié)合起來(lái),使“數(shù)”與“形”相互轉(zhuǎn)化,達(dá)到抽象思維與形象思維的結(jié)合,從而使問(wèn)題得以化難為易。具體來(lái)說(shuō),就是把數(shù)量關(guān)系的問(wèn)題,轉(zhuǎn)化為圖形問(wèn)題,利用圖形的性質(zhì)得出結(jié)論,再回到數(shù)量關(guān)系上對(duì)問(wèn)題做出回答;反過(guò)來(lái),把圖形問(wèn)題轉(zhuǎn)化成一個(gè)數(shù)量關(guān)系問(wèn)題,經(jīng)過(guò)計(jì)算或推論得出結(jié)論再回到圖形上對(duì)問(wèn)題做出回答,這是解決數(shù)學(xué)問(wèn)題常用的一種方法。分類討論思想是根據(jù)所研究對(duì)象的差異,將其劃分成不同的種類,分別加以研究,從而分解矛盾,化整為零,化一般為特殊,變抽象為具體,然后再一一加以解決。分類依賴于標(biāo)準(zhǔn)的確定,不同的標(biāo)準(zhǔn)會(huì)有不同的分類方式?傊瑪(shù)學(xué)思想方法是分析解決數(shù)學(xué)問(wèn)題的靈魂,也是訓(xùn)練提高數(shù)學(xué)能力的關(guān)鍵,更是由知識(shí)型學(xué)習(xí)轉(zhuǎn)向能力型學(xué)習(xí)的標(biāo)志。
(六)提高數(shù)學(xué)能力。
數(shù)學(xué)能力的提高,是我們數(shù)學(xué)學(xué)習(xí)的主要目的,能力培養(yǎng)是目前中學(xué)數(shù)學(xué)教育中倍受關(guān)注的問(wèn)題,因此能力評(píng)價(jià)也就成為數(shù)學(xué)考查中的熱點(diǎn)。
(1)熟練準(zhǔn)確的計(jì)算能力
數(shù)式運(yùn)算、方程的解法、幾何量的計(jì)算,這些都是初中數(shù)學(xué)重點(diǎn)解決的問(wèn)題,應(yīng)該做到準(zhǔn)確迅速。
(2)嚴(yán)密有序的分析、推理能力
推理、論證體現(xiàn)的是邏輯思維能力,幾何問(wèn)題較多。提高這一能力,應(yīng)從以下幾個(gè)方面著手:
(ⅰ)認(rèn)清問(wèn)題中的條件、結(jié)論,特別要注意隱含條件;
(ⅱ)能正確地畫(huà)出圖形;
(ⅲ)論證要做到步步有依據(jù);
(ⅳ)學(xué)會(huì)執(zhí)果索因的分析方法。
(3)直觀形象的數(shù)形結(jié)合能力
“數(shù)”和“形”是數(shù)學(xué)中兩個(gè)最基本的概念,研究數(shù)學(xué)問(wèn)題時(shí),一定要學(xué)會(huì)利用數(shù)形結(jié)合的數(shù)學(xué)思想方法。
(4)快速高效的閱讀能力
初三數(shù)學(xué)中可閱讀的內(nèi)容很多,平時(shí)學(xué)習(xí)中要盡可能多地去讀書(shū),通過(guò)課內(nèi)、外的閱讀,既可以提高興趣、幫助理解,同時(shí)也培養(yǎng)了閱讀能力。如果不注意提高閱讀能力,那么應(yīng)對(duì)閱讀量較大的考題或熱點(diǎn)閱讀理解型題目就會(huì)有些力不從心了。
(5)觀察、發(fā)現(xiàn)、創(chuàng)新的探索能力
數(shù)學(xué)教育和素質(zhì)教育所提倡的“過(guò)程教學(xué)”中的“過(guò)程”指的是數(shù)學(xué)概念、公式、定理、法則的提出過(guò)程、知識(shí)的形成發(fā)展過(guò)程、解題思路的探索過(guò)程、解題方法和規(guī)律的概括過(guò)程。只有在平時(shí)的學(xué)習(xí)中注意了這些“過(guò)程”才能提高自己獨(dú)立解決問(wèn)題、自主獲取知識(shí),不斷探索創(chuàng)新的能力。
(七)注重實(shí)際應(yīng)用。
利用所學(xué)數(shù)學(xué)知識(shí)去探求新知識(shí)領(lǐng)域,去研究解決實(shí)際問(wèn)題是數(shù)學(xué)學(xué)習(xí)的歸宿。加強(qiáng)數(shù)學(xué)與實(shí)際的聯(lián)系是素質(zhì)教育的要求。解應(yīng)用問(wèn)題的關(guān)鍵是轉(zhuǎn)化,即將實(shí)際應(yīng)用問(wèn)題轉(zhuǎn)化成數(shù)學(xué)模型,再利用數(shù)學(xué)知識(shí)去解決問(wèn)題,從而不斷提高自己用數(shù)學(xué)的意識(shí)解決實(shí)際問(wèn)題的能力。最后要強(qiáng)調(diào)的是:有效的數(shù)學(xué)學(xué)習(xí)活動(dòng)不能單純地依賴模仿與記憶,動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)習(xí)數(shù)學(xué)的重要方式。我們應(yīng)該在這樣的學(xué)習(xí)過(guò)程中真正理解和掌握基本的數(shù)學(xué)知識(shí)與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。
歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪問(wèn)中考網(wǎng),2023中考一路陪伴同行!>>點(diǎn)擊查看